Membrane-bound conformation and topology of the antimicrobial peptide tachyplesin I by solid-state NMR.

نویسندگان

  • Tim Doherty
  • Alan J Waring
  • M Hong
چکیده

The conformation and membrane topology of the disulfide-stabilized antimicrobial peptide tachyplesin I (TP) in lipid bilayers are determined by solid-state NMR spectroscopy. The backbone (phi and psi) torsion angles of Val(6) are found to be -133 degrees and 142 degrees , respectively, and the Val(6) CO-Phe(8) H(N) distance is 4.6 A. These constrain the middle of the N-terminal strand to a relatively ideal antiparallel beta-sheet conformation. In contrast, the phi angle of Gly(10) is +/-85 degrees , consistent with a beta-turn conformation. Thus, TP adopts a beta-hairpin conformation with straight strands, similar to its structure in aqueous solution but different from a recently reported structure in DPC micelles where bending of the two beta-strands was observed. The Val(6) and Gly(10) CO groups are both 6.8 A from the lipid (31)P, while the Val(6) side chain is in (1)H spin diffusion contact with the lipid acyl chains. These results suggest that TP is immersed in the glycerol backbone region of the membrane and is oriented roughly parallel to the plane of the membrane. This depth of insertion and orientation differs from those of the analogous beta-sheet antimicrobial peptide protegrin-1 and suggest the importance of structural amphiphilicity in determining the location and orientation of membrane peptides in lipid bilayers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic structure of disulfide-removed linear analogs of tachyplesin-I in the lipid bilayer from solid-state NMR.

Tachyplesin-I (TP-I) is a 17-residue beta-hairpin antimicrobial peptide containing two disulfide bonds. Linear analogs of TP-I where the four Cys residues were replaced by aromatic and aliphatic residues, TPX4, were found to have varying degrees of activities, with the aromatic analogs similarly potent as TP-I. Understanding the different activities of the linear analogs should give insight int...

متن کامل

Peptide-lipid interactions of the beta-hairpin antimicrobial peptide tachyplesin and its linear derivatives from solid-state NMR.

The peptide-lipid interaction of a beta-hairpin antimicrobial peptide tachyplesin-1 (TP-1) and its linear derivatives are investigated to gain insight into the mechanism of antimicrobial activity. (31)P and (2)H NMR spectra of uniaxially aligned lipid bilayers of varying compositions and peptide concentrations are measured to determine the peptide-induced orientational disorder and the selectiv...

متن کامل

Interaction between tachyplesin I, an antimicrobial peptide derived from horseshoe crab, and lipopolysaccharide.

Lipopolysaccharide (LPS) is a major constituent of the outer membrane of Gram-negative bacteria and is the very first site of interactions with antimicrobial peptides (AMPs). In order to gain better insight into the interaction between LPS and AMPs, we determined the structure of tachyplesin I (TP I), an antimicrobial peptide derived from horseshoe crab, in its bound state with LPS and proposed...

متن کامل

Solution and micelle-bound structures of tachyplesin I and its active aromatic linear derivatives.

Tachyplesin I is a 17-residue peptide isolated from the horseshoe crab, Tachypleus tridentatus. It has high antimicrobial activity and adopts a beta-hairpin conformation in solution stabilized by two cross-strand disulfide bonds. We report an NMR structural investigation of wild-type tachyplesin I and three linear derivatives (denoted TPY4, TPF4, and TPA4 in which the bridging cysteine residues...

متن کامل

Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy.

Disulfide-bonded beta-hairpin structures are common among antimicrobial peptides. Disulfide bonds are known to be important for antimicrobial activity, but the underlying structural reason is not well understood. We have investigated the membrane-bound structure of a disulfide-deleted analogue of the antimicrobial peptide protegrin-1, in which the four Cys residues were replaced by Ala. The sec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 45 44  شماره 

صفحات  -

تاریخ انتشار 2006